The Future of Lithium-ion Space Batteries: A Supplier's Perspective

Rob Spurrett

rob.spurrett@abslpower.com +44 7968 095 641

Lithium-ion: The Preferred Technology

NBW Papers 2000 and 2008:

For All Applications

The Next Space Chemistry?

TECHNOLOGY 30Wh/kg 60Wh/kg 120Wh/kg

JUMP NiCd
$$\rightarrow$$
 NiH2 \rightarrow Li-ion \rightarrow ?

ENVIRONMENTAL

PUSH \bigstar \bigstar ?

- Incremental developments of each technology but ...
 - ... it is environmental factors drive the technology jumps
- Which environmental factor will cause the next jump?
- As important to understand that as it is chemistry advances ...

How many suppliers?

Specialist space batteries vendors selling to USA:

NiCd two + Prime DIYs

NiH₂ two/three + Prime DIYs

Current Li-ion five + smaller ones + fewer Prime DIYs

Market size increasing? Not by a factor of 2/3.

Current revenues of biggest five companies: c. \$100m p.a.

Sustainable competitive environment? Probably not.

CONSOLIDATION / WITHDRAWAL INEVITABLE?

Custom Space Cell Approach	ABSL Small Cell Approach
Space qualified processes	Smaller cells easier?
Source inspection	LAT / screening?
x12 to x333 better?	Quality learning curve
Less interconnections	Less electronics
	Battery redundancy

- Greater variability between supplier than between approach
- Will never have enough data to prove or disprove this

FITs in context

Space component FIT rates (random failure rates – not wear-out rates):

Capacitor: 0.1-10

NiH₂: cell circa 200

Li-ion cell: 5-500

- NOTE: 5 500 FIT = MTBF 2 to 200 million hours
- Largest cell life-test database (ABSL) only 141 million cell-hours!!!
- Mathematical fact:
 - Large custom space cells are often assigned a FIT rate of 200
 - We have been building and testing custom Li-ion for, say, ten years
 - Assuming there are less than one million custom cells on test (very likely)
 - Another ten years test needed before we can expect the first failure ...

Reliability of commercial cells ...

- Learning curves: Henderson, Levy (1965)
- Cost $X_n = K N^{-b}$
- Quality learning curves: Schneiderman (1988) $QI_n = (QI_n) N^{\pm m}$

Perspective:

Sony 41 million/month – whole space industry since 1957 in less than 2 days! Does not mean that all high-volume cells are good quality ...

ABSL technology watch – 250 cells – found highly variable quality

Screen to improve quality?

- ✓ to remove rogues/outliers
- * to trim population
 - not the same as low σ (std dev)
 - many cells at extremes

Reliability of Sony cells ...

- Data for commercial product suggests better than single digit FIT
 - Then up-screen MIL-HBK-217 suggests x12 to x333 improvement
 - Figures very hard to believe it is an incredible cell!!
- Lap-top incidents
 - 40 overheating incidents 17 to 20 'smoke / flames'
 - Sony manufactured c. 4 billion cells at time of issue
 - Latest recall concerned product from a 260m production volume
 - Assume each has three years continuous operation (pessimistic)
 - Incident FIT between 0.00018 and 0.0059 best/worst-case

Perspective:

- For all 8,300 S/C since 1957, less than 2% probability of incident
- Custom space cells (of any type) could be at least x10⁵ more susceptible and we would be unlikely to know it yet ...

Reliability: a 'relative' science

Reliability as a function of %redundant strings

Comparative example:
Five-year mission
Eight cell strings

5 FIT – dark blue 50 FIT - pink

- Adding 5% redundant strings gives high reliability for low FIT cells
- Of course, can only add 5% spare if you have a battery with greater than
 20 strings ...

So, how big can you go ...

- Always provokes strong opinions
- Many of the original 'sceptics' have now become 'believers'
 - Stable arrays with 13.5 year LEO cycling (accelerated to 9 years)
 - Self discharge rate measurements on ten year old cells
- Engineering analysis or 'common sense'?

"A collection of prejudices acquired during the course of your first two space programmes"

- For some engineers the number of interconnects is a concern
 - Same engineers use solar arrays with no issues
- My contention:
 - Small cell = smaller coil pack + more interconnects
 - Coil pack is a far high reliability challenge than an interconnect

'Small' is the new 'Big'

Safety – abuse and use

Overcharge

External Shorts

Protection Devices

Abuse of COTS cells well characterised → engineering solutions

The current concern: internal shorts

- Difficult to characterise and even more difficult to engineer against
- Incidents are so very rare in commercial cells acceptable risk?
- Improve risk: good quality cells, SMALL CELLS BETTER (c.f. TIAX analysis)
- Reality: thermal design protects against some shorts, further reduces risk

The 3rd party supplier dilemma...

- Key issue is verifying cycle-life performance
 - ABSL life-test data set, multi-million \$ investment
 - Rely upon LAT to read-across life test data
 - Need to detect very small changes in chemistry
- ABSL contend that a detailed LAT costs > \$150k
- Alternative is to life-test each COTS batch before flight
 - Only practical for short missions (<one year?)

Supplier Relationships

- Confession: ABSL heritage solution its not exactly COTS
 - Commercial design standard manufactured to order for ABSL by Sony
 - Hence eye-watering price premium
 - But finance is not what incentivises Sony
- Must be non-financial driver for commercial supplier to work in Space
- Sony / ABSL goes back to patents
- Impacts custom cells as well

Our conclusion:

ARM'S LENGTH RELATIONSHIP WITH COTS SUPPLIER IS VERY HIGH RISK

You'll get surprises in LAT or life-test that blow your investment

Should COTS be low-cost?

	'Traditional' Approach	'Small-Cell' Approach
Cell Cost	\$\$\$	\$
LAT	Not required	\$\$S
Screening	\$	\$\$S
Battery assembly	\$\$	\$\$

Total About the same

- Small cell approach can provide low-cost if:
 - If mission is short, no hard reliability requirements
 - Then buy a COTS batch & life-test (but extensive life-test is not cheap)
- Significant cost driver is the nature of the customer not the approach
 - How many meetings, how much documentation, hand-holding, etc?

The Dichotomy of the Space Industry

Quality (Hard to quantify)

Performance (Poor return on investment)

Price (Too many competitors)

Conclusions

ABSL small cell OR custom space cell?

Both work, all suppliers have a potential future. But it depends on ...

• ... environmental factors above technical prowess, for example:

Political
 ITAR, environmental regulations

Financial
 Robustness to financial climate

– Incidents
First major safety incident?

Technological
 Other rechargeable battery markets

Security of supply
 Easiest materials for low-vol / high rel

The problem with the future is that it is obsolete by the time you get there...